Key Summary of Published Article

Analytical Validation and Performance Characteristics of a 48-Gene Next-Generation Sequencing Panel for Detecting Potentially Actionable Genomic Alterations in Myeloid Neoplasms

Background

- Myeloid neoplasms are a heterogenous group of malignant disorders that develop in the bone marrow and peripheral blood. They include acute myeloid leukemia (AML), myelodysplastic syndromes (MDSs), and myeloproliferative neoplasms (MPNs).
- Analysis of genetic variants can help guide clinical management, and next-generation sequencing (NGS) panels have been developed for analysis of myeloid neoplasms.
- However, some technical challenges remain for these panels.^{1,2} For example, some genes commonly altered in myeloid neoplasms, such as *CEBPA*, *CARL*, and *FLT3*, are particularly difficult to sequence.
- **Objectives:** Investigators developed and validated an NGS panel of 48 genes, including those that are technically difficult to sequence by NGS, for variant analysis of AML, MDSs, and MPNs.

Methods

- The 48 gene targets included in the NGS panel were selected based on being associated with the diagnosis or clinical management (including therapy selection) of myeloid neoplasms.
- Technically difficult-to-sequence genes included CEBPA, CARL, and FLT3.
 Single-nucleotide variations, insertions/deletions, and FLT3 internal tandem
- duplications were detected using a bioinformatics pipeline developed in-house.
 For analytical validation, 184 deidentified specimens were analyzed for variants.
- To allow for comparison relative to an existing panel, another 137 specimens were selected because at least 1 pathogenic variant in a gene included in the 48-gene
- panel was detected with a 35-gene hematologic neoplasm panel.
 To assess clinical performance, 2,053 submitted specimens from patients with probable myeloid neoplasms were tested using the 48-gene NGS panel.

Results

- Analytical validation studies demonstrated that the 48-gene NGS panel had 99.6% (95% CI, 98.9-99.9%) sensitivity and 100% (95% CI, 100%) specificity, with no falsepositive results.
- The 48-gene panel showed 100% agreement for variants detected with the 35-gene hematologic panel.
- Of 2,053 submitted patient specimens
 - 55.6% (n=1,142/2,053) had ≥1 pathogenic variant.
 - 51.7% (n=1,062/2,053) had clinically significant (prognostic, diagnostic, actionable) variants.
 - 41.7% (n=856/2,053) had ≥1 variant that was actionable (available therapy or experimental drug).

Conclusions

 The findings of this study show that the 48-gene NGS panel can detect actionable variants, including those in genes that are difficult to sequence.

Article published in *PLoS One*

Authors

Sun Hee Rosenthal,¹ Anna Gerasimova,¹, Charles Ma,¹ Hai-Rong Li,¹ Andrew Grupe,¹ Hansook Chong,¹ Allan Acab,¹ Alla Smolgovsky,¹ Renius Owen,¹ Christopher Elzinga,¹ Rebecca Chen,¹ Daniel Sugganth,¹ Tracey Freitas,² Jennifer Graham,² Kristen Champion,² Anindya Bhattacharya,¹ Frederick Racke,¹ Felicitas Lacbawan¹

Affiliations

¹ Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA ² med fusion, Lewisville, TX, USA

Citation

Rosenthal SH, Gerasimova A, Ma C, et al. *PLoS One*. 2021;16(4):e0243683. doi:10.1371/journal.pone.0243683

Webpage

https://journals.plos.org/plosone/article ?id=10.1371/journal.pone.0243683

References

- Bacher U, Shumilov E, Flach J, et al. Challenges in the introduction of nextgeneration sequencing (NGS) for diagnostics of myeloid malignancies into clinical routine use. *Blood Cancer* J. 2018;8:113. doi:10.1038/s41408-018-0148-6
- Aguilera-Diaz A, Vazquez I, Ariceta B, et al. Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. *PLoS One.* 2020;15:e0227986. doi:10.1371/journalpone.0227986

QuestDiagnostics.com

Quest, Quest Diagnostics, any associated logos, and all associated Quest Diagnostics registered or unregistered trademarks are the property of Quest Diagnostics. All third-party marks—® and ™—are the property of their respective owners. © 2021 Quest Diagnostics Incorporated. All rights reserved. KS10192 05/2021