

Detection of Germline and Somatic BRCA Mutations Using a 50-Gene Next-Generation Sequencing Panel

Background

- Genetic variants in BRCA1 and BRCA2 are often detected in breast and ovarian cancer patients; BRCA1 variants are commonly associated with TP53 variants.¹
- Investigators previously developed a 50-gene, next-generation sequencing (NGS) panel that can detect mutations in breast and ovarian tumor specimens.²
- The frequency of variants identified by individual panels in a clinical setting is an important measure of panel performance.
- **Objective:** In this study, the investigators at a national reference laboratory used the 50-gene NGS panel to examine the frequency of *BRCA1/2* and *TP53* mutations in tumor specimens.

Methods

- The investigators conducted a retrospective analysis of deidentified results from consecutive fixed formalin-fixed and paraffin-embedded (FFPE) tissue specimens submitted to Quest Diagnostics for testing with a 50-gene NGS panel.
 - Targeted exon capture and NGS were used to detect variants in BRCA1, BRCA2, TP53, and 47 other actionable genes with variants often found in solid tumors.
 - Variant analysis included single nucleotide variants, insertions/deletions, translocations, and copy number variants; tumor mutation burden and microsatellite instability were also analyzed.

Results

- A total of 240 FFPE specimens were included:
 - 123 from patients with breast cancer (median age 54 years)
 - 116 from patients with ovarian cancer (median age 63 years)
 - 1 from a patient with breast and ovarian cancer (age 48 years)
- Pathogenic BRCA1/2 mutations were identified in
 - 4.8% (6/124) of breast cancer patients
 - 13.9% (16/115) of ovarian cancer patients
- Variants of unknown significance were identified in
 - 10.5% (13/124) of breast cancer patients
 - 7.0% (8/115) of ovarian cancer patients
- Pathogenic TP53 mutations were identified in
 - 93.3% (14/15) of patients with BRCA1 mutations
 - 62.8% (137/218) of patients without *BRCA1/2* mutations (*P*=0.016)

Conclusions

- With the previously developed and optimized 50-gene NGS panel, the prevalence
 of pathogenic *BRCA1/2* mutations in this study population was 4.8% in breast
 cancer patients and 13.9% in ovarian cancer patients; these frequencies are
 similar to findings of other studies.³
- Most (93%) breast and ovarian tumors with BRCA1 mutations also had a pathogenic TP53 mutation.

Poster presentation at the 8th International Symposium on Hereditary Breast and Ovarian Cancer

Authors

Sun Hee Rosenthal, Charles Ma, Allan Acab, Rebecca Nakles-Taylor, Michael Van Ness, Daniel Sugganth, Joseph Catanese, Renius Owen, Frederick Racke, Felicitas Lacbawan

Affiliation

Quest Diagnostics, San Juan Capistrano, CA

8th International Symposium on Hereditary Breast and Ovarian Cancer, Virtual Edition, May 4-7, 2021

Date: May 6

Time: 11:30-13:00 EDT

Webpage

TBD

References

- Peng L, Xu T, Long T, et al. Association between BRCA status and p53 status in breast cancer: a meta-analysis. Med Sci Monit. 2016;22:1939-1945.
- Ma L, Hua M, Rivera S, et al. Validation of a clinically actionable core cancer gene test for solid tumors facilitating targeted molecular therapy and immunotherapy. Abstract presented at American Association for Cancer Research Annual Meeting 2017; April 1-5, 2017; Washington, DC. https://cancerres.aacrjournals.org/conte nt/77/13_Supplement/5356
- Kurian AW, Ward KC, Howlader N, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37(15):1305-1315. doi:10.1200/JCO.18.01854