

Intact Fasting Insulin Identifies Nonalcoholic Fatty Liver Disease in Patients Without Diabetes

Background

- Identification of nonalcoholic fatty liver disease (NAFLD) may permit the implementation
 of strategies to prevent progression to advanced liver disease, but NAFLD is often
 underdiagnosed.¹
- Insulin resistance (IR) is associated with NAFLD,² but methods often used to measure IR have not accurately predicted NAFLD in prior studies.^{3,4}
- The discrepancy may be the result of multiple factors: combining patients with and without diabetes in the studies, using assays with low sensitivity for NAFLD (eg, ultrasound, liver enzymes), or measuring insulin with immunoassays, which can be variable.
- Objective: The investigators of this study examined whether measuring intact insulin
 molecules with a validated multiplexed liquid chromatography-tandem mass
 spectrometry (LC-MS/MS) method could accurately predict NAFLD.

Methods

- Recruited participants underwent a 2-hour oral glucose tolerance test (OGTT), with insulin measurements every 30 minutes.
- Liver fat was measured by magnetic resonance spectroscopy (¹H-MRS) to test for NAFLD, which was confirmed with a liver biopsy.
- Intact fasting insulin molecules and C-peptide levels were measured by the validated LC-MS/MS method.

Results

- Among the 180 recruited patients (mean age: 52 years; 67% male), 117 (65%) had NAFLD and 82 (46%) had diabetes.
- Fasting insulin levels were higher among patients with NAFLD (diabetic and nondiabetic) than those without NAFLD.
- Measurement of intact fasting insulin using the LC-MS/MS method predicted NAFLD with high accuracy among patients without diabetes, with area under the receiver operating characteristic curve (AUC)=0.90 (0.84-0.96), which was better than that of radioimmunoassay (RIA): 0.80 (0.71-0.89), P=0.007.
- For patients without diabetes, the LC-MS/MS method (using a cutoff of 10.5 μU/mL) had a sensitivity of 92.5%, specificity of 71.1%, PPV of 79.0%, and NPV of 88.9%.
- In patients without diabetes, intact fasting insulin also predicted NAFLD with greater accuracy than other clinical measurements (eg, ALT, AST, triglycerides, HDL, glucose, hemoglobin A1c, and BMI).
 - However, when measurement of intact fasting insulin was combined with measurement of ALT, the prediction of NAFLD improved (AUC=0.94 [0.89-0.99]; PPV=90.3%; NPV=88.9%).
- In patients without diabetes, using both intact fasting insulin and ALT measurements
 predicted NAFLD better than other previously validated noninvasive scores, including
 the NAFLD-liver fat score (P=0.009), hepatic steatosis index (P<0.001), and triglycerideglucose index (P=0.039).
- In patients with diabetes, measurement of intact fasting insulin, either by the LC-MS/MS or RIA methods, had lower accuracy (AUC≤0.75).

Conclusions

 The noninvasive LC-MS/MS method of measuring intact fasting insulin molecules accurately predicted NAFLD in patients without diabetes, especially when used in conjunction with ALT measurements.

Article published in the Journal of Clinical Endocrinology & Metabolism

Authors

Fernando Bril,^{1,2} Michael J McPhaul,³ Srilaxmi Kalavalapalli,² Romina Lomonaco,² Diana Barb,² Megan E Gray,¹ Dov Shiffman,³ Charles M Rowland,³ Kenneth Cusi^{2,4}

Affiliations

¹University of Alabama, Birmingham, AL, USA ²University of Florida, Gainesville, FL, USA ³Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA ⁴Malcom Randall, VAMC, Gainesville, FL, USA

Citation

Bril F, McPhaul MJ, Kalavalapalli S, et al. *J Clin Endocrinol Metab*. doi:10.1210/clinem/dgab417

Webpage

https://academic.oup.com/jcem/ad vance-articleabstract/doi/10.1210/clinem/dgab4 17/6311619?redirectedFrom=fullte xt

References

- Alexander M, Loomis AK, Fairburn-Beech J, et al. BMC Med. 2018;16:130.
- Khan RS, Bril F, Cusi K, et al. Hepatology. 2019;70:711-724. doi:10.1002/hep.30429
- Isokuortti E, Zhou Y, Peltonen M, et al. *Diabetologia*. 2017;60:1873-1882. doi:10.1007/s00125-017-4340-1
- Kotronen A, Peltonen M, Hakkarainen A, et al. Gastroenterology. 2009;137:865-872. doi:10.1053/j.gastr.2009.06.005